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Abstract: This paper concerns the finite-time H∞ filtering of discrete Markov jump system with incomplete transition

probabilities which cover the cases of known, uncertain and unknown. To include all possible cases, with the

probability viewpoint, a truncated Gaussian distribution is employed to describe them. To ensure the filtering error

systems to be finite-time stochastic stable with a prescribed noise attenuation level, sufficient conditions for the H∞

filter design are yielded in terms of solvability of a set of linear matrix inequalities. A numerical example is given to

illustrate the effectiveness of the proposed method.

1 Introduction

Over the past decades, an increasing research activity has been
devoted to Markov jump systems (MJSs). Many results about
stability, stabilisation, particle filtering, synchronisation control and
sliding mode control have been scattered in the literature, see [1–
19]. Paralleling to these fruitful theoretical results, many efforts
have also been made on the widespread use of this kind of
systems, such as aircraft control systems, robotic manipulator
systems, power systems and transportation systems [1, 2].

Different from linear systems, the dynamic process of MJSs is
governed by a Markov chain, namely, the mode transited from one
to another is determined by its transition probabilities which has
direct influence on system stability and performance. Under the
assumption that the transition probabilities are completely known,
a lot of achievements have been reported on stability analysis,
controller design and optimisation, see [3–19]. Nevertheless, in
engineering, it is difficult or costly to catch the full information of
all transition probabilities, which leads that the results established
by the idea assumption is restrictive. Taking vertical take-off
landing helicopter system in the aerospace industry as an example,
the airspeed variation involved in the system matrices are
modelled as a Markov chain. Due to the limitation of the
measurement equipment, not all the probabilities of the jumps
among multiple airspeeds are readily to be measured.
Consequently, the obtained transition probabilities may be
inaccurate. To conquer this difficulty, some tentative methods have
been developed in [20–27]. Concretely speaking, [20, 21] utilise
the robust methodology to deal with transition probabilities with
norm bounded or polytopic uncertainties. Considering a more
realistic situation that the practical transition probability matrix
may be partly known, the stability, stabilisation and filtering
problems are studied by the authors of [22–26]. With the
stochastic viewpoint, an alternative representation of partly known
transition probabilities is given in [27–29].

On the other hand, an important problem in the process of control
system design is its stability. For MJSs, stochastic stability, moment
stability, exponential stability and almost sure stability are well
investigated by the authors of [3, 4] over an infinite-time interval.
However, the stochastic stability in infinite-time interval may

cause large values of the states which are not acceptable in the
presence of saturations. To deal with this transient performance of
control dynamics, finite-time stability or short-time stability for
linear system is proposed in [30–35]. By extending them to
stochastic scenario, the finite-time stochastic stability is adopted to
study the behaviour of MJSs during a fixed finite-time interval
[36–40]. Specially, the finite-time H∞ filtering of time-delay
stochastic jump systems with unbiased estimation is investigated in
[36]. On the basis of dynamic observer-based state feedback
method, the finite-time H∞ fuzzy controller design for non-linear
jump system with time delays is presented in [37]. Finite-time H∞

estimation of discrete-time MJSs with time-varying transition
probabilities subject to average dwell time switching is discussed
in [40]. With the consideration of partly known transition
probabilities, the finite-time stochastic stability and stabilisation of
discrete MJSs and the finite-time H∞ filtering non-linear stochastic
systems are studied in [38, 39], respectively.

This paper further considers the finite-time filtering of discrete
MJSs with incomplete transition probabilities which are assumed
to be known, uncertain and unknown. To present these transition
probabilities in a unified framework, a stochastic description is
proposed in terms of the truncated Gaussian method. On the basis
of this description, the main focus is concentrated to the finite-time
filter design. To make the filtering error system be stochastically
stable with a prescribed H∞ performance index, on the basis of the
stochastic Lyapunov theory and the transition probability property,
sufficient conditions for the desired filter design are developed in
terms of solvability of a set of linear matrix inequalities. A
numerical example is provided to demonstrate the effectiveness of
the proposed approach.

Notation: Throughout this paper, MT represents the transpose of
matrix M. ℤ+ denotes the set of positive integers and N∈ℤ

+. The
notation X≤ Y(X < Y) where X and Y are symmetric matrices,
means that X− Y is negative semi-definite (negative definite),
respectively. I and 0 represent identity matrix and zero matrix,
respectively. L2 denotes the space of square integrable vector
functions of a given dimension over [0, ∞), with norm
E ||x||22
{ }

= E
∑

1

k=0 x(k)
Tx(k) dt

{ }

, 1. w denotes the entries of
matrices implied by symmetry. ηmin and ηmax denote the smallest
and the largest eigenvalue of matrix P, respectively. 4l

ij and 4u
ij
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denote the lower and the upper bound of πij. Notations sup and inf
denote the supremum and infimum. Matrices, if not explicitly
stated, are assumed to have appropriate dimensions. Finally, the
symbol He(X ) is used to represent (X + XT).

2 Preliminaries and problem statement

Consider the following discrete MJSs

x(k + 1) = A(r(k))x(k)+ B1(r(k))w(k)

y(k) = C1(r(k))x(k)+ D1(r(k))w(k)

z(k) = C2(r(k))x(k)+ D2(r(k))w(k)

⎧

⎨

⎩

(1)

where k∈ [0 N], x(k)∈ Rn is the state variables, y(k)∈ Rp is the
measured output, z(k)∈ Rq is the signal to be estimated and w
(k)∈ Rl is the disturbance input which belongs to L2[0, 1) . r(k)
is a Markov process taking values on the finite set
I = {1, 2, . . . , s} with transition probabilities

pij = Pr(r(k) = j|r(k − 1) = i) (2)

where πij denotes the transition probability from mode i at time k− 1
to mode j at time k. A(r(k)), B1(r(k)), C1(r(k)), C2(r(k)), D1(r(k)) and
D2(r(k)) are system matrices with appropriate dimensions. when r(k)
= i, they are abbreviated as Ai, B1i, C1i, C2i, D1i and D2i.

Practically, in engineering systems, transition probabilities are
generally obtained by experiments. Due to the complexity of
environment, the measurement cost and the accuracy of
equipment, they may not be exactly known. To make the
considered problem be readily solvable, robust methodologies are
adopted in [21, 22, 25]. Compared with these deterministic
strategies, based on a stochastic description, a feasible idea is to
utilise their distribution [27, 29]. Omitting the approximation
details, the Gaussian probability method is employed to
parameterise them. In this case, (2) is modified as follows:

p
fk
ij = Pr(r(k) = j|r(k − 1) = i, k) (3)

where p
fk
ij 4l

ij ≤ p
fk
ij ≤ 4u

ij

( )

denotes the transition probability

from mode i to mode j and fk is a set of random variables
indexed by Gaussian stochastic process to address transition
probabilities varying continuously. The truncated Gaussian

probability density function (PDF) p p
fk
ij

( )

of p
fk
ij is given below

p p
fk
ij

( )

=
1/






sij
√( )

f p
fk
ij − mij

( )

/





sij
√[ ]

F 4u
ij − mij

( )

/





sij
√[ ]

− F 4l
ij − mij

( )

/





sij
√[ ] (4)

where f (†) is the PDFof the standard normal distribution, F(†) is the
cumulative distribution function of f (†), ϱij and σij are the known
mean and variance of the Gaussian PDF, respectively. Therefore,
the transition probability density matrix is defined as

n @11, s11

( )

n @12, s12

( )

· · · n @1s, s1s

( )

n @21, s21

( )

n @22, s22

( )

· · · n @2s, s2s

( )

· · · · · · · · · · · ·
n @s1, ss1

( )

n @s2, ss2

( )

· · · n @ss, sss

( )

⎡

⎢

⎢

⎣

⎤

⎥

⎥

⎦

(5)

where n @ij, sij

( )

= p p
fk
ij

( )

.

According to the probability theory, the expectation of p
fk
ij is

calculated as

E p
fk
ij

( )

=
∫4u

ij

4u
ij

p
fk
ij p p

fk
ij

( )

dp
fk
ij

= @ij +
f 4l

ij −mij

[ ]

/





sij
√( )

− f 4u
ij −mij

[ ]

/





sij
√( )

F 4l
ij −mij

[ ]

/





sij
√( )

−F 4u
ij −mij

[ ]

/





sij
√( )






sij

√

(6)

Consequently, the desired transition probability matrix is obtained

E p
fk

11

( )

E p
fk

12

( )

· · · E p
fk

1s

( )

E p
fk

21

( )

E p
fk

22

( )

· · · E p
fk

2s

( )

· · · · · · · · · · · ·
E p

fk

s1

( )

E p
fk

s2

( )

· · · E pfk
ss

( )

⎡

⎢

⎢

⎢

⎢

⎣

⎤

⎥

⎥

⎥

⎥

⎦

(7)

with
∑s

j=1 E p
fk
ij

{ }

= 1.

Remark 1: According to the above discussion, if σij = 0 (σij≠∞),

E p
fk
ij

( )

is known (uncertain with known bounds). Otherwise (σij

=∞), it is unknown. Therefore, this form is consistent with the
form proposed in [23–25].
To facilitate further discussion, the following presentation is utilised:

I i
k W j:sij = 0 or sij = 1

{ }

,

I i
uk W j:sij = 1

{ }

.

(8)

The aim of this paper is to design a full-order mode-dependent
finite-time filter which is given below

xf (k + 1) = Af ixf (k)+ Bf iy(k)

zf (k) = Cf ixf (k)+ Df iy(k)

{

(9)

where xf(k) is the filter state, zf(k) is the filter output. Afi, Bfi, Cfi and
Dfi are filter gains to be designed.

Remark 2: The difference between a finite-time filtering and a
filtering is that the former focuses its attention on the transient
behaviour of a system response and the latter is its asymptotic
behaviour. In this sense, saturation-induced non-linear effects or
safety-critical operative conditions will be avoided in the
finite-time case.
Define

x̂(k) = x(k)

xf (k)

[ ]

and e(k) = z(k)− zf(k), combining (1) with (9), the filtering error
dynamic can be written as

x̂(k + 1) = Âix̂(k)+ B̂iw(k)

e(k) = Ĉ ix̂(k)+ D̂iw(k)

{

(10)
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where

Âi =
Ai 0

Bf iC1i Af i

[ ]

, B̂i =
Bi

Bf iD1i

[ ]

(11)

Ĉi = C2i − Df iC1i −Cf i

[ ]

, D̂i = D2i − Df iD1i (12)

Before discussing the finite-time H∞ filtering problem, some
assumptions and definitions are given below.

Assumption 1: The random variables fk and r(k) are independent
from each other.

Assumption 2: The external disturbance w(k) satisfies the constraint

E
∑

N

k=0

w(k)Tw(k)

{ }

≤ d (d ≥ 0) (13)

Definition 1: The discrete MJSs (1) with w(k) = 0 is said to be
stochastic finite-time stable with respect to (c1, c2, Ri, N) where
0 < c1 < c2, Ri > 0 and N∈ℤ

+, if

E xT(0)Rix(0)
{ }

≤ c1 � E xT(k)Rix(k)
{ }

≤ c2 k = 1, 2, . . . , N( )
(14)

Definition 2: The discrete MJS (1) is said to be stochastic finite-time
boundedness with respect to (c1, c2, Ri, N, d ) where 0 < c1 < c2, Ri > 0
and d satisfies (13) if (14) holds.

On the basis of these definitions, the finite-time H∞ filtering is
formulated as follows.

Given a prescribed level of noise attenuation γ (γ > 0), determine
a full-order filter in the form of (9), such that the filtering error
system (10) is stochastic finite-time stable and satisfies the following

E
∑

N

k=0

eT(k)e(k)

{ }

≤ g2E
∑

N

k=0

wT(k)w(k)

{ }

(15)

under zero-initial conditions for any non-zero w(k).

3 Main results

This section presents the main results for the finite-time H∞ filtering
design for discrete MJSs with incomplete transition probabilities.
Linear matrix inequality (LMI) conditions are derived to ensure
the filtering error system to be finite-time stochastic boundedness.

Lemma 1: The filtering error system (10) is stochastic finite-time
boundedness if, for a given scalar μ (μ ≥ 1), there exists two sets
of symmetric positive-definite matrices Pi and Qi (i [ I ) such that
the following inequalities hold:

−mPi 0 ∗
0 −Qi ∗

MiÂi MiB̂i −Mi

⎡

⎣

⎤

⎦ , 0 (16a)

supi[I hmax P̂i

( ){ }

c1 + supi[I

hmax Qi

( ){ }

d ≤ inf i[I hmin P̂i

( ){ }

m−Nc2

(16b)

where

Mi = Pi
k + likPl , Pi

k =
∑

j[I i
k

E p
fk
ij

{ }

Pj ,

lik = 1−
∑

j[I i
k

E p
fk
ij

{ }

,

P̂i = R
− 1/2( )
i PiR

− 1/2( )
i , l [ I i

uk .

Proof: Choose the following quadratic Lyapunov functional
candidate for the error system (10):

V (k) := V (x̂(k), r(k) = i) = x̂T(k)Pix̂(k) (17)

where Pi > 0 for each i. Then, V(k + 1) is calculated as

E{V (k+1)}= x̂T(k)ÂT
i +wT(k)B̂T

i

{ }

×
∑

s

j=1

E p
fk
ij

{ }

( )

Pj Âix̂(k)+ B̂iw(k)
{ }

=
x̂(k)

w(k)

[ ]T
Â
T
i

∑

s

j=1

E p
fk
ij

{ }

PjÂi Â
T
i

∑

s

j=1

E p
fk
ij

{ }

PjB̂i

w 0

⎡

⎣

⎤

⎦

x̂(k)

w(k)

[ ]

(18)

Due to Pi coupling with E p
fk
ij

{ }

, (18) is formulated in bilinear form,

which is difficult to be solved. To separate this interconnection, the
transition probability property is made full use of. Namely,

employing the fact
∑

j[I i
k
E p

fk
ij

{ }

+
∑

j[I i
uk
E p

fk
ij

{ }

= 1, one has

∑

j[I i
uk
E p

fk
ij

{ }( )

/ 1−
∑

j[I i
k
E p

fk
ij

{ }( )[ ]

= 1. For convenience,

some abbreviated expressions are given as bi
k =

∑

j[I i
uk
E p

fk
ij

{ }( )

/ 1−
∑

j[I i
k
E p

fk
ij

{ }( )[ ]

, lik = 1−
∑

j[I i
k
E p

fk
ij

{ }

and Pi
k =

∑

j[I i
k
E p

fk
ij

{ }

Pj. Taking a transformation to (18), one has

E{V (k+1)}=
x̂(k)

w(k)

[ ]T

× bi
k

Â
T
i likPl+Pi

k

( )

Âi Â
T
i likPl+Pi

k

( )

B̂i

w B̂
T
i likPl+Pi

k

( )

B̂i

[ ]{ }

×
x̂(k)

w(k)

[ ]

(19)

On the other hand, referring to Schur complement to (16a), it yields

Â
T
i Pi

k +likPl

( )

Âi Â
T
i Pi

k +likPl

( )

B̂i

0 B̂
T
i Pi

k +likPl

( )

B̂i

[ ]

,
mPi 0

w Qi

[ ]

(20)

Taking (20) to (19), it follows

E{V (k+1)}, mx̂T(k)Pix̂(k)+wT(k)Qiw(k)
{ }

≤E mV (k)+ sup j[I hmax(Qi)
{ }

wT(k)w(k)
{ }

=mE{V (k)}+ sup j[I hmax(Qi)
{ }

E wT(k)w(k)
{ }

(21)
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Thus

E{V (k)}

,mE{V (k−1)}+ sup j[I hmax(Qi)
{ }

E wT(k−1)w(k−1)
{ }

,m2E{V (k−1)}+ sup j[I hmax(Qi)
{ }

E{wT(k−1)w(k−1)

+mwT(k−2)w(k−2)}

· · ·

,mkE{V (0)}+ sup j[I hmax(Qi)
{ }

E
∑

k−1

h=0

mk−h−1wT(h)w(h)

{ }

,mNE{V (0)}+ sup j[I hmax(Qi)
{ }

mNd

(22)
Let P̂i =R

−(1/2)
i PiR

−(1/2)
i and note E x̂T(0)Rix̂(0)

{ }

≤ c1, one has

E{V (0)}=E x̂T(0)Pix̂(0)
{ }

=E x̂T(0)R
(1/2)
i P̂iR

(1/2)
i x̂(0)

{ }

≤ supi[I hmax P̂i

( ){ }

E x̂T(0)Rix̂(0)
{ }

≤ supi[I hmax P̂i

( ){ }

c1

(23)

On the other hand

E{V (k)}=E x̂T(k)R
(1/2)
i P̂iR

(1/2)
i x̂(k)

{ }

≥ inf i[I hmin P̂i

( ){ }

E x̂T(k)Rix̂(k)
{ }

(24)

Combining with (22)–(24), the following formula is derived:

E x̂T(k)Rix̂(k)
{ }

,
supi[I hmax P̂i

( ){ }

mNc1+ supi[I hmax(Qi)m
Nd

{ }

inf i[I hmin P̂i

( ){ }

(25)

From (16b), E x̂T(k)Rix̂(k)
{ }

, c2 (k = 1, 2, …, N) can be
guaranteed. □

Remark 3: In the proceeding of derivation, to separate the coupling
among unknown transition probabilities and Lyapunov variables, the
transition probability property is made full use of.

On the basis of Lemma 1, a sufficient condition for the filtering error
system (10) to be stochastic finite-time boundedness with the
prescribed H∞ performance index is given in the following lemma.

Lemma 2: The filtering error system (10) is stochastic finite-time
boundedness with the prescribed H∞ performance index γ, if, for a
given constant scalar μ (μ ≥ 1), there exist a set of symmetric
positive-definite matrices Pi (i [ I ) such that the following

inequalities hold:

−mPi 0 ∗ ∗
0 −m−Ng2I ∗ ∗

MiÂi MiB̂i −Mi

Ĉ i D̂i 0 −I

⎡

⎢

⎢

⎣

⎤

⎥

⎥

⎦

, 0 (26a)

supi[I hmax P̂i

( ){ }

c1 + m−Ng2d ≤ inf i[I hmin P̂i

( ){ }

m−N c2 (26b)

where Mi and P̂i is the same as that of Lemma 1.

Proof: On the basis of (26a), the following inequality holds:

−mPi 0 ∗
0 −m−Ng2I ∗

MiÂi MiB̂i −Mi

⎡

⎣

⎤

⎦ , 0 (27)

According to Lemma 1, the filtering error system (10) to be
stochastic finite-time boundedness can be guaranteed by replacing
Qi with μ

−N
γ
2
I. Thus, we only need to prove that (15) holds under

zero-value initial condition. Choose the same Lyapunov function
as Lemma 1, then it follows

E(V (k + 1))− mE(V (k))+ E eT(k)e(k)− m−Ng2wT(k)w(k)
( )

=
x̂(k)

w(k)

[ ]T

Pi

x̂(k)

w(k)

[ ]

(28)

where (see equation at bottom of the page)

Taking the similar lines as that of Lemma 1 to deal with the
completely unknown transition probabilities, (28) can be further
rewritten as (see (29))

where Ji = likPl + Pi
k .

Combining (29) with (26a), one has

E(V (k + 1))− mE(V (k))

+ E eT(k)e(k)− m−Ng2wT(k)w(k)
( )

, 0
(30)

which is also rewritten as

E(V (k + 1)) , mE(V (k))

− E eT(k)e(k)
( )

+ m−Ng2E wT(k)w(k)
( )

(31)

Similarly to (22), we can obtain

E(V (k)) ,mkE(V (0))−
∑

k−1

h=0

mk−h−1E eT(h)e(h)
( )

+m−Ng2
∑

k−1

h=0

mk−h−1E wT(h)w(h)
( )

(32)

Pi =
Â
T
i

∑

s

j=1

E p
fk
ij

{ }

PjÂi + Ĉ
T
i Ĉ i − mPi Â

T
i

∑

s

j=1

E p
fk
ij

{ }

PjB̂i + Ĉ
T
i D̂i

w B̂
T
i

∑

s

j=1

E p
fk
ij

{ }

PjB̂i + D̂
T
i D̂i − m−Ng2I

⎡

⎢

⎢

⎢

⎣

⎤

⎥

⎥

⎥

⎦

E(V (k + 1))− mE(V (k))+ E eT(k)e(k)− m−Ng2wT(k)w(k)
( )

=
x̂(k)

w(k)

[ ]T

bi
k

Â
T
i JiÂi + Ĉ

T
i Ĉ i − mPi Â

T
i JiB̂i + Ĉ

T
i D̂i

w B̂
T
i JiB̂i − m−Ng2I

[ ]{ }

x̂(k)

w(k)

[ ] (29)
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Under the zero-value initial condition, one has

∑

k−1

h=0

mk−h−1E eT(h)e(h)
( )

, m−Ng2
∑

k−1

h=0

mk−h−1E wT(h)w(h)
( )

(33)

Due to the fact that μ ≥ 1, we can obtain

∑

N

h=0

E eT(h)e(h)
( )

≤
∑

N

h=0

mN−hE eT(h)e(h)
( )

, m−Ng2
∑

N

h=0

mN−hE wT(h)w(h)
( )

≤ g2
∑

N

h=0

E wT(h)w(h)
( )

(34)

□

Since it is difficult to solve (26b) directly, a tractable condition
formulated in terms of LMIs is given in the following lemma.

Lemma 3: The filtering error system (10) is stochastic finite-time
stable with the prescribed H∞ performance index γ if, for a
constant scalar μ (μ ≥ 1), there exist positive scalars c1, c2, a set
of matrices Gi and Pi > 0 (i [ I ) such that the following
inequalities hold:

−mPi 0 ∗ ∗
0 −m−Ng2I ∗ ∗

GiÂi GiB̂i He −Gi

( )

+Mi ∗
Ĉ i D̂i 0 −I

⎡

⎢

⎢

⎣

⎤

⎥

⎥

⎦

, 0 (35a)

m−N −c1c2 + g2d
( )






c1
√

c2

w −c2

[ ]

, 0 (35b)

c1Ri ≤ Pi ≤ c2Ri (35c)

where Mi is the same as that of Lemma 1.

Proof: The derivation of (35a) from (26a) is based on the method
proposed in [41]. For the second part, the derivation (35b) and
(35c) from (26b) is given below. According to

P̂i = R
−(1/2)
i PiR

−(1/2)
i , let c1Ri≤ Pi≤ c2Ri, then we have

c2c1 + m−Ng2d , m−Nc1c2 (36)

which is just (35b). □

Remark 4: Via introducing slack variables Gi, contrast to Lemma 2,
there is no interconnection among Pi, Âi and B̂i. Moreover, by
restricted Pi as a special structure, (26b) is expressed in terms of
linear matrix inequality. Although this transformation may
introduce some conservativeness, it simplifies the filter design. In
future, we will consider how to reduce this conservativeness.

On the basis of Lemma 3, sufficient conditions for the finite-time
filter design are given in the following theorem.

Theorem 1: Given positive scalars μ (μ ≥ 1) and γ. If there exist
approximate matrices

Pi =
Pi11 w

Pi12 Pi22

[ ]

. 0, Gi =
Gi11 Gi2

Gi21 Gi2

[ ]

,

c1, c2, afi, bfi, cfi and dfi (i [ I ) such that the following matrix

inequalities

−mQi11 0 ∗ ∗
0 −m−Ng2I ∗ ∗

Qi31 Qi32 Qi33 ∗
Qi41 Qi42 0 −I

⎡

⎢

⎢

⎣

⎤

⎥

⎥

⎦

, 0 (37a)

m−N −c1c2 + g2d
( )






c1
√

c2

w −c2

[ ]

, 0 (37b)

c1Ri ≤ Pi ≤ c2Ri (37c)

where

Qi11 =
Pi11 w

Pi12 Pi22

[ ]

, Qi31 =
Gi11Ai + bf iC1i af i

Gi21Ai + bf iC1i af i

[ ]

Qi32 =
Gi11Bi + bfiD1i

Gi21Bi + bf iD1i

[ ]

,

[ Qi33 = He −Gi

( )

+
∑

j[I i
k

E p
fk
ij

{ }

P
fk
j + likPl

Qi41 = C2i − df iC1i −cf i
[ ]

, Qi42 = D2i − df iD1i, l [ I i
uk .

Then, the filter error system (10) is stochastic finite-time
boundedness and has a prescribed H∞ index γ. Moreover, the
desired filter parameters are given by Af i = G−1

i2 af i, Bf i = G−1
i2 bf i,

Cfi = cfi and Dfi = dfi.

Proof: Taking the structures of

Pi =
Pi11 w

Pi12 Pi22

[ ]

and Gi =
Gi11 Gi2

Gi21 Gi2

[ ]

into Lemma 3 and choosing afi =Gi2Afi, bfi =Gi2Bfi, cfi =Cfi and dfi =
Dfi, then the proof is completed. □

Remark 5: Note that the conditions given in this theorem for given
Ri, c1, N, μ are linear to other variables. Therefore, the optimal γ
can be researched by replacing δ = γ

2 in (37a)–(37c).

4 Numerical example

Consider the following class of discrete-time MJSs (1) with four
operation modes and the following data

A1 =
0.5 −0.55

0.6 −0.2

[ ]

, A2 =
0.5 −0.5

−0.4 −0.2

[ ]

,

A3 =
0.6 0.45

0.5 0.2

[ ]

, A4 =
0.45 0.4

−0.6 0.5

[ ]

B1 = −0.8 0.5
[ ]T

, B2 = 0.8 0.3
[ ]T

,

B3 = 0.3 0.2
[ ]T

, B4 = 0 1.2
[ ]T

C11 = 1.5 −0.5
[ ]

, C12 = −0.9 0.9
[ ]

,

C13 = 1.1 0.1
[ ]

, C14 = 1.5 0.5
[ ]

C21 = 1.2 −0.9
[ ]

, C22 = 0.05 0.5
[ ]

,

C23 = 0.01 0.5
[ ]

, C24 = 0.5 0.5
[ ]

D11 = 0.8, D12 = 1.2, D13 = 0.8,

D14 = 0.8, D21 = 0.8, D22 = 1.1,

D23 = 0.6, D24 = 0.8.
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with the initial value x0 = 0.3 0.2
[ ]T

. Borrowed from [27], the
measured transition probability matrix with a probability approach
is represented as

n(0.3, 0) n(0.2, 0) n(0.1, 0) n(0.4, 0)

n(0.3, 1) n(0.2, 1) n(0.3, 1) n(0.2, 1)

n(0.1, 0.01) n(0.1, 1) n(0.5, 1) n(0.3, 0)

n(0.2, 0.01) n(0.2, 1) n(0.1, 1) n(0.5, 1)

⎡

⎢

⎢

⎣

⎤

⎥

⎥

⎦

(38)

According to the matrix, it can be seen that the covariances of some
elements tend to ∞ which means the corresponding element is
completely unknown. If the approach proposed in [20] is
employed, where the uncertain transition probabilities are treated
as unknown, the above transition probability matrix is reduced to

0.3 0.2 0.1 0.4

? ? 0.3 0.2

? ? ? 0.3

? ? ? ?

⎡

⎢

⎢

⎣

⎤

⎥

⎥

⎦

(39)

However, by taking mathematical expectation to (38), the
approximated transition probability matrix is given below

0.3 0.2 0.1 0.4

? ? 0.3 0.2

0.10248 ? ? 0.3

0.19881 ? ? ?

⎡

⎢

⎢

⎣

⎤

⎥

⎥

⎦

(40)

Comparing these two matrices, it can be seen that the latter has more
information than the former.

With the obtained transition probability matrix (40), the finite-time
filter problem of system (1) over the fixed time interval 0 10

[ ]

is
tested. Setting μ = 1.05, c1 = 0.1, c2 = 1, d = 0.9

Ri =
0.1 0

0 0.1

[ ]

and N = 10, by solving (37a)–(37c), the optimal γ is 1.6219 and the
filtering parameters are given below

Af1 =
0.0920 −0.1990

−0.0224 0.0378

[ ]

, Af2 =
0.1059 −0.1145

−0.0680 −0.0769

[ ]

,

Af3 =
−0.0112 0.1048

0.0030 −0.0283

[ ]

, Af4 =
−0.0161 0.0855

0.0151 −0.0803

[ ]

Bf1 =
−0.1398

−0.4235

[ ]

, Bf2 =
0.1668

0.0974

[ ]

,

Bf3 =
−1.5012

0.4421

[ ]

, Bf4 =
−0.4617

0.4335

[ ]

Cf1 =
−0.1450

0.4000

[ ]T

, Cf2 =
−0.4764

0.2046

[ ]T

,

Cf3 =
0.0153

−0.1427

[ ]T

, Cf4 =
0.1803

−0.4875

[ ]T

Df1 = 0.8216, Df2 = 0.3844, Df3 = 0.0736, Df4 = 0.5985.

Thus, one possible mode of evolution, the filter state response curves
xf1(k) and xf2(k), the curves z(k) and zf(k), and filter finite-time
evolution curves xTf (k)Rixf (k) are given in Figs. 1–4, respectively.

From the above response curves, it can be seen that the designed
filter ensures the finite-time stochastic stability with the optimised
H∞ performance level.

Fig. 1 One possible mode of evolution

Fig. 2 Filter state response curves xf1(k) and xf2(k)

Fig. 3 Curves z(k) and zf(k)
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5 Conclusions

This paper considers the finite-time H∞ filtering of discrete MJSs
with incomplete transition probabilities represented by the
Gaussian probability method. Sufficient conditions are established
in the framework of LMIs to guarantee the stochastic finite-time
boundedness and a prescribed H∞ index of the filtering error
system. The effectiveness of the developed method is shown by a
numerical example.

6 Acknowledgments

This work was supported by the National Natural Science Foundation
of China (grant nos. 61403189, 61473156), the Doctoral Foundation
of Ministry of Education of China (grant nos. 20133221120012,
20133204120018), the Natural Science Foundation of Jiangsu
Province of China (grant no. BK20130949), the Natural Science
Foundation of Jiangsu Provincial Universities of China (grant no.
13KJB120004); the National Science Foundation for Post-doctoral
Scientists of China (grant nos. 2014M551487, 2015M570397) and
Jiangsu Post-doctor grants (nos. 1301009A, 1401015B), Key
Laboratory Foundation of Advanced Control and Optimization for
Chemical Processes (grant no. 2015ACOCP01).

7 References

1 Mariton, M.: ‘Jump linear systems in automatic control’ (Marcel Dekker,

New York, 1990)

2 Costa, O.L.V., Fragoso, M.D., Marques, R.P.: ‘Discrete-time Markov jump linear

systems, ser. probability and its applications’ (Springer-Verlag, New York, 2005)

3 Ji, Y., Chizeck, H.J.: ‘Controllability, stabilizability, and continuous-time

Markovian jump linear quadratic control’, IEEE Trans. Autom. Control, 1990,

35, pp. 777–788

4 Feng, X., Loparo, K.A., Ji, Y., Chizeck, H.J.: ‘Stochastic stability properties of

jump linear systems’, IEEE Trans. Autom. Control, 1992, 37, pp. 38–53

5 de Farias, D.P., Geromel, J.C., do Val, J.B., Costa, O.L.V.: ‘Output feedback

control of Markov jump linear systems in continuous-time’, IEEE Trans. Autom.

Control, 2000, 45, pp. 944–949

6 Li, W., Jia, Y.: ‘Rao-Blackwellised unscented particle filtering for jump Markov

non-linear systems: an H∞ approach’, IET Signal Process., 2011, 5, pp. 187–193

7 Li, W., Jia, Y.: ‘Rao-Blackwellised particle filtering and smoothing for jump

Markov non-linear systems with mode observation’, IET Signal Process., 2013,

7, pp. 327–336

8 Wu, Z., Shi, P., Su, H., Chu, J.: ‘Asynchronous l2− l∞ filtering for discrete-time

stochastic Markov jump systems with randomly occurred sensor nonlinearities’,

Automatica, 2014, 50, pp. 180–186

9 do Val, J.B.R., Geromel, J.C., Goncalves, A.P.C.: ‘The H2-control for jump linear

systems. Cluster observations of the Markov state’, Automatica, 2002, 38,

pp. 343–349

10 Xu, S., Chen, T., Lam, J.: ‘Robust H∞ filtering for uncertain Markovian jump

systems with mode-dependent time-delays’, IEEE Trans. Autom. Control, 2003,

48, pp. 900–907

11 Wu, Z., Shi, P., Su, H., Chu, J.: ‘Stochastic synchronization of Markovian jump

neural networks with time-varying delay using sampled-data’, IEEE Trans.

Cybernetics, 2013, 43, pp. 1796–1806

12 Xu, S., Chen, T., Lam, J.: ‘Robust H∞ filtering for a class of nonlinear discrete-time

Markovian jump systems’, J. Optim. Theory Appl., 2004, 122, pp. 651–668

13 Wang, Z., Lam, J., Liu, X.: ‘Exponential filtering for uncertain Markovian jump

time-delay systems with nonlinear disturbances’, IEEE Trans. Circuits Syst. II,

Express Briefs, 2004, 51, pp. 262–268

14 Wu, Z., Shi, P., Su, H., Chu, J.: ‘Passivity analysis for discrete-time stochastic

Markovian jump neural networks with mixed time-delays’, IEEE Trans. Neural

Netw., 2011, 22, pp. 1566–1575

15 Fioravanti, A.R., Goncalves, A.P.C., Geromel, J.C.: ‘H2 filtering of discrete-time

Markov jump linear systems through linear matrix inequalities’, Int. J. Control,

2008, 81, pp. 1221–1231

16 Shi, P., Xia, Y., Liu, G., Rees, D.: ‘On designing of sliding mode control for

stochastic jump systems’, IEEE Trans. Autom. Control, 2006, 51, pp. 97–103

17 Gao, H., Fei, Z., Lam, J., Du, B.: ‘Further results on exponential estimates of

Markovian jump systems with mode-dependent time-varying delays’, IEEE

Trans. Autom. Control, 2011, 56, pp. 223–229

18 Chen, B., Niu, Y., Zou, Y., Jia, T.: ‘Reliable sliding-mode control for Markovian

jumping systems subject to partial actuator degradation’, Circuits Syst. Signal

Process., 2013, 32, pp. 601–614

19 Chen, B., Niu, Y., Zou, Y.: ‘Adaptive sliding mode control for stochastic

Markovian jumping systems with actuator degradation’, Automatica, 2013, 49,

pp. 1748–1754

20 Ghaoui, L.E., Rami, M.A.: ‘Robust state-feedback stabilization of jump linear

systems via LMIs’, Int. J. Robust Nonlinear Control, 1996, 6, pp. 1015–1022

21 Xiong, J., Lam, J., Gao, H., Daniel, W.C.: ‘On robust stabilization of Markovian

jump systems with uncertain switching probabilities’, Automatica, 2005, 41,

pp. 897–903

22 Zhang, L., Boukas, E.-K., Lam, J.: ‘Analysis and synthesis of Markov jump linear

systems with time-varying delays and partially known transition probabilities’,

IEEE Trans. Autom. Control, 2008, 53, pp. 2458–2464

23 Shen, M., Yang, G.: ‘New analysis and synthesis conditions for continuous Markov

jump linear systems with partly known transition probabilities’, IET Control

Theory Appl., 2012, 6, pp. 2318–2325

24 Shen, M., Yang, G.: ‘H2 filter design for discrete-time Markov jump linear systems

with partly unknown transition probabilities’, Opt. Control Appl. Methods, 2012,

33, pp. 318–337

25 Shen, M., Ye, D.: ‘Improved fuzzy control design for nonlinear Markovian-jump

systems with incomplete transition descriptions’, Fuzzy Sets Syst., 2013, 217,

pp. 80–95

26 Wang, G., Zhang, Q., Sreeram, V.: ‘Partially mode-dependent H∞ filtering for

discrete-time Markovian jump systems with partly unknown transition

probabilities’, Signal Process., 2010, 90, pp. 548–556

27 Luan, X., Zhao, S., Shi, P., Liu, F.: ‘H∞ filtering for discrete-time Markov jump

systems with unknown transition probabilities’, Int. J. Adapt. Control Signal

Process., 2014, 28, pp. 138–148

28 Luan, X., Shi, P., Liu, F.: ‘Finite-time stabilisation for Markov jump systems with

Gaussian transition probabilities’, IET Control Theory Appl., 2013, 7, pp. 298–304

29 Luan, X., Zhao, S., Liu, F.: ‘H∞ Control for discrete-time Markov jump systems

with uncertain transition probabilities’, IEEE Trans. Autom. Control, 2013, 58,

pp. 1566–1572

30 Amato, F., Ariola, M., Dorate, P.: ‘Finite-time control of linear systems subject to

parametric uncertainties and disturbances’, Automatica, 2001, 37, pp. 1459–1463

31 Amato, F., Ariola, M.: ‘Finite-time control of discrete-time linear systems’, IEEE

Trans. Autom. Control, 2005, 50, pp. 724–729

32 Garcia, G., Tarbouriech, S., Bernussou, J.: ‘Finite-time stabilization of linear

time-varying continuous systems’, IEEE Trans. Autom. Control, 2009, 54,

pp. 364–369

33 Zhao, S., Sun, J., Liu, L.: ‘Finite-time stability of linear time-varying singular

systems with impulsive effects’, Int. J. Control, 2008, 81, pp. 1824–1829

34 Wang, Y., Shi, X., Wang, G., Zuo, Z.: ‘Finite-time stability for continuous-time

switched systems in the presence of impulse effects’, IET Control Theory Appl.,

2012, 6, pp. 1741–1744

35 Cheng, J., Zhu, H., Zhong, S., Zheng, F., Zeng, Y.: ‘Finite-time filtering for

switched linear systems with a mode-dependent average dwell time’, Nonlinear

Anal., Hybrid Syst., 2015, 15, pp. 145–156

36 He, S., Liu, F.: ‘Finite-time H∞ filtering of time-delay stochastic jump systems with

unbiased estimation’, Proc. Inst. Mech. Eng. I, J. Syst. Control Eng., 2010, 224,

pp. 947–959

37 He, S., Liu, F.: ‘Finite-time H∞ fuzzy control of nonlinear jump system with time

delays via dynamic observer-based state feedback’, IEEE Trans. Fuzzy Syst., 2012,

20, pp. 605–614

38 Luan, X., Liu, F., Shi, P.: ‘Finite-time filtering for non-linear stochastic systems

with partially known transition jump rates’, IET Control Theory Appl., 2010, 4,

pp. 735–745

39 Zuo, Z., Liu, Y., Wang, Y., Li, H.: ‘Finite-time stochastic stability and stabilisation

of linear discrete-time Markovian jump systems with partly unknown transition

probabilities’, IET Control Theory Appl., 2012, 6, pp. 1522–1526

40 Cheng, J., Zhu, H., Zhong, S., Zhong, Q., Zeng, Y.: ‘Finite-time H∞ estimation for

discrete-time Markov jump systems with time-varying transition probabilities

subject to average dwell time switching’, Commun. Nonlinear Sci. Numer.

Simul., 2015, 20, pp. 571–582

41 de Oliveira, M.C., Bernussou, J., Geromel, J.C.: ‘A new discrete-time robust

stability condition’, Syst. Control Lett., 1999, 37, pp. 261–265

Fig. 4 Filter finite-time evolution curves xTf ( k)Rixf ( k)

IET Signal Process., 2015, Vol. 9, Iss. 7, pp. 572–578

578 & The Institution of Engineering and Technology 2015

 17519683, 2015, 7, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/iet-spr.2014.0376 by N

anjing Forestry U
niversity, W

iley O
nline L

ibrary on [27/07/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense


	1 Introduction
	2 Preliminaries and problem statement
	3 Main results
	4 Numerical example
	5 Conclusions
	6 Acknowledgments
	7 References

